- The rotator \mathbf{Q} that rotates vectors \mathbf{u} in \Re^{2} counterclockwise through an angle θ, as shown in Figure 4.7.1, is a linear operator on \Re^{2} because the "action" of \mathbf{Q} on \mathbf{u} can be described by matrix multiplication in the sense that the coordinates of the rotated vector $\mathbf{Q}(\mathbf{u})$ are given by

$$
\mathbf{Q}(\mathbf{u})=\binom{x \cos \theta-y \sin \theta}{x \sin \theta+y \cos \theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

- The projector \mathbf{P} that maps each point $\mathbf{v}=(x, y, z) \in \Re^{3}$ to its orthogonal projection $(x, y, 0)$ in the $x y$-plane, as depicted in Figure 4.7.2, is a linear operator on \Re^{3} because if $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then
$\mathbf{P}(\alpha \mathbf{u}+\mathbf{v})=\left(\alpha u_{1}+v_{1}, \alpha u_{2}+v_{2}, 0\right)=\alpha\left(u_{1}, u_{2}, 0\right)+\left(v_{1}, v_{2}, 0\right)=\alpha \mathbf{P}(\mathbf{u})+\mathbf{P}(\mathbf{v})$.
- The reflector \mathbf{R} that maps each vector $\mathbf{v}=(x, y, z) \in \Re^{3}$ to its reflection $\mathbf{R}(\mathbf{v})=(x, y,-z)$ about the $x y$-plane, as shown in Figure 4.7.3, is a linear operator on \Re^{3}.
$\mathbf{Q}(\mathbf{u})=(\mathrm{x} \cos \theta-\mathrm{y} \sin \theta, \mathrm{x} \sin \theta+\mathrm{y} \cos \theta)$

Figure 4.7.1

Figure 4.7.2

Figure 4.7.3

- Just as the rotator \mathbf{Q} is represented by a matrix $[\mathbf{Q}]=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, the projector \mathbf{P} and the reflector \mathbf{R} can be represented by matrices

$$
[\mathbf{P}]=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad[\mathbf{R}]=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

in the sense that the "action" of \mathbf{P} and \mathbf{R} on $\mathbf{v}=(x, y, z)$ can be accomplished with matrix multiplication using $[\mathbf{P}]$ and $[\mathbf{R}]$ by writing

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
x \\
y \\
-z
\end{array}\right) .
$$

