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e The rotator Q that rotates vectors u in R? counterclockwise through an
angle 6, as shown in Figure 4.7.1, is a linear operator on R2 because the
“action” of Q on u can be described by matrix multiplication in the sense
that the coordinates of the rotated vector Q(u) are given by

Q(u) = xcosf —ysingd\  (cosf —sinf x
" \xsinf@+ycosh /] \ sinf  cosb y )
e The projector P that maps each point v = (z,y,z) € R to its orthogonal

projection (z,y,0) in the zy-plane, as depicted in Figure 4.7.2, is a linear
operator on R? because if u = (uy,us,u3) and v = (vy,ve,v3), then

P(au+ v) = (ouy +v1, aus+v2,0) = auy, ug, 0)+ (v1, v2,0) = aP(u) + P(v).

e The reflector R that maps each vector v = (z,y,z) € R to its reflection
R(v) = (z,y,—2) about the zy-plane, as shown in Figure 4.7.3, is a linear
operator on R3.
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e Just as the rotator Q is represented by a matrix [Q] = (Cosa —sind )7 the

sin 6 cos 0
projector P and the reflector R can be represented by matrices

100 10 0
Pl=(0 1 0 and [R]=[0 1 0
00 0 00 —1

in the sense that the “action” of P and R on v = (x,y,2) can be accom-
plished with matrix multiplication using [P] and [R] by writing

1 0 0 T x 1 0 0 T T
0 1 0 yl=1uvy and 0 1 0 y | = Y
0 0 O z 0 0 0 -1 z —z




